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Abstract Standard hardware redundancy techniques, such as
RAID, only protect against entire disk failures. Latent-sec

Storage system fa||ure_ IS & serious conf:ern as we ap_torfaults (occurring in 8.5% of a million disks studied [11])
proach Petascale computing. Even at today’s sub-Petascale

. . : . . _controller failures, or 1/O node failures can render data in
levels, I/O failure is the leading cause of downtimes and job : . : . .
) ; accessible even with RAID. Failover strategies require
failures. We contribute a novel, on-the-fly recovery frame- . . .
o . .~ spare nodes to substitute the failed ones, an expensive op-
work for job input data into supercomputer parallel file

systems. The framework exploits key traits of the HPC 1/0O tion with thous_ands_ Of node_s. It would be _benef|C|aI to
. o address these issueithin the file systerto provide grace-

workload to reconstruct lost input data during job execu-

. . . ful, transparent, and portable data recovery.

tion from remote, immutable copies. Each reconstructed ) . i

data stripe is made immediately accessible in the clientre- HPC environments provide unique fault-tolerance op-

quest order due to the delayed metadata update and ﬁnepo_rt_unme_s. Consider a typl_cal HPC workload. Before sub-

granular locking while unrelated access to the same file re- Mitting a job, users stage in data to the scratch PFS from

mains unaffected. We have implemented the recovery com&nd-user locations. After the job dispatch (hours to days

ponent within the Lustre parallel file system, thus building  'atér) and completion (again hours or days later), users
novel application-transparent online recovery solutiGur move their output data off the scratch PFRSy to their lo-

solution is integrated into Lustre’s two-level locking eohe €@l Storage). Thus, job input and output data seldom need to
using a two-phase blocking protocol. Combining paramet- "€Side on the scratch PFS beyond a short window before or
ric and simulation studies, our experiments demonstrate a2fter the job’s execution. Specifically, key charactecsof
significant improvement in HPC center serviceability and JOP inputdata are their being (1) transient, (2) immutable,
user job turnaround time. and (3) redundant in terms of a remote source copy.

i In this paper, we proposen-the-fly data reconstruc-
1. Introduction tion during job execution. We contribute an application-

In HPC settings, data and I/O availability is critical transparent extension to the widely used Lustre paraltel fil

to center operations and user serviceability. Petascate masystem [2], thereby adding reliability into the PFS by sthiel
chines require 10,000s of disks attached to 1,000s of I/Ojing faults at many levels of an HPC storage system from
nodes. Plans for 100k to 1M disks are being discussed inthe applications. With our mechanism, a runtime 1/O error
this context. The numbers alone imply severe problems with (E|0) captured by the PFS instantly triggers the recovery of
reliability. In such a setting, failure is inevitable. I/@ifure missing pieces of data and resolves application requests im
and data unavailability can have significant ramificatians t mediately when such data becomes available.
a supercomputer center at large. For instance, an 1/0 node Such an approach is a dramatic improvement in fault
failure in a parallel file system (PFS) renders portions ef th handling in modern PFSs. At present, an I/O error is prop-

data inagcessible resulting in eit_her application stgliom agated through the PFS to the application, which has no
I/O or being forced to be resubmitted and rescheduled.  pernative but to exit. Users then need to re-stage input

_Upon an I/G error, the default behavior of file systems gq it necessary and resubmit the job. Instead of resource-
Is to simply propagate the error back to the client. Usually, ,nsming 1/0 node failover or data replication to avoid
file systgmg do little beyond providing diagnostics SO that g,ch failures, our solution does not require additionat-sto
the application or the user may perform error handling and 56 capacity. Only the missing data stripes residing on the
recovery. For applications that go through rigid resoulee @ t5jjeq /0 node are staged again from their original remote
location and lengthy queuing to execute on Petascale SUygeation. Exploiting Lustre's two-level locks, we have im-
percomputers, modern parallel file systems’ failure to mask plemented a two-phase blocking protocol combined with

storage faults appears particularly expensive. delayed metadata updates that allows unrelated data re-
quests to proceed while outstanding 1/0O requests to recon-
+  This work is supported in part by a DOE ECPI Award (DE-FGO02- i ;
05ER25685). an NSF HECURA Award (CCF-0621470), a DOE con- stru_cted data are served in order, as soon as a s_tnpe becomes
tract with UT-Battelle, LLC (DE-AC05-000R2275), a DOE gran ~ available. Recovery can thus be overlapped with computa-
(DE-FG02-05ER25664) and Xiaosong Ma’s joint appointmeet b tion and communication as stripes are recovered. Our exper-

tween NCSU and ORNL. imental results reinforce this by showing that the incréase




job execution time due to on-the-fly recovery is negligible quires additional scratch space. Our other earlier work re-
compared to non-faulting runs. In a simulation study, us- covered lost stagein datfline (after job submission but
ing our experimental results as parametric input for recov- before its dispatch) [16]. Thenline recoverydescribed in
ery overhead and HPC center job traces as workloads, wethis paper complements the latter approach and provides an
demonstrate a reduction of over an order of magnitude in alternative to replication if its implementation compligis
the mean wait time of jobs affected by /O errors. considered to be too high or when scratch space is scarce.
Consider the ramifications of our approach. From a cen- 3. On-the-fly recovery
ter standpoint, 1/O failures traditionally increase theepv The overarching goal of this work is to address file sys-
all expansion factar.e., (wall_time + waittime)/wallime  temg fault tolerance when it comes to serving HPC work-
averaged over all jobs (the closer to 1, the better). Many |554s. The following factors weigh in on our approach.
_federal agencies (DOD, NSF, DOE) are already reque_st- (1) Mitigate the effects of I1/0 node failurén 1/0 node
ing such metrics from HPC. centgrs. From a user Standp,o'm’failure can adversely affect a running job by causing it to
I/O errors result in dramatically increased turnaroundetim fail, being requeued or exceeding time allocation, all of
and, d_epending on already performed compu_tati_o_n, a CoImeyhich impacts the HPC center and user. Our solution pro-
sponding waste of resources. Our method significantly re- motes continuous job execution that minimizes the above

duces this waste and results in lower expansion factors. costs.(2) Improve file system response to failuFéte sys-
2. Related work tem response to failure is inadequate. As we scale to thou-

For PFSs like Lustre, the standby OSS node’s load prac-sands of I/0 nodes and few orders of magnitude more disks,
tically doubles upon storage node failure. Also, software file systems need to be able to handle failure gracef(8ly.
compatibility problems prevent the use of storage node Target HPC workloadsThe transient and immutable na-
failovers, e.g. for with Jaguar, the 23,412-core Cray su- ture of job input data and its persistence at a remote logatio
percomputer at ORNL. Due to these factors, storage nodepresent an unique opportunity to address data availability
failover is not widely adopted by supercomputers Our ap- HPC environments. We propose to integrate fault tolerance
proach provides an inexpensive, software-based altemati into the PFS specifically for HPC I/O workloadd) Be in-
that protects PFSs against storage node failures by utiliz-clusive of disparate data sources and protocti®C users
ing natural redundancy in job input data. use a variety of storage systems and transfer protocols to

While RAID [7] protects against disk failures, it cannot host and move their data. It is desirable to consider externa
protect against I/O node failures. RAID can also be crippled storage resources and protocols as part of a broader I/O hi-
by multiple disk faults within a group, latent sector errors erarchy.(5) Be transparent to client application8pplica-
and controller failure [1, 4, 9]. With increased disk cafci  tions are currently forced to explicitly handle I/O errorso
itis projected that the reconstruction time (already atahsz ~ simply ignore them. We promote a recovery scheme widely
of hours) will increase by 10% a year [11]. This suggests transparent to the applicatiof) PerformanceFor individ-
that a second (non-recoverable) failure is more likely dur- ual jobs, on-the-fly recovery should impose minimal over-
ing long reconstructions [11]. Our approach recovers from head on existing PFS functionality. For a supercomputing
I/0 node failures and could even hide performance degra-center, it should improve the overall job throughput com-
dation due to RAID reconstruction. pared to requeuing the job.

I/0 shepherding [4] introduces a reliability infrastruc- Architectural Design: To provide fault tolerance to
ture for file systems by executing I/O requests using user-PFS, the on-the-fly recovery component should be able
specified failure tolerance mechanisms including retries, to successfully trap 1/0 error of a system call result-
sanity checking, checksums, and mirrors or parity protec- ing from 1/0 node failure. In a typical parallel computing
tion to recover from lost blocks or disks. This work is simi- environment, parallel jobs are launched on the numer-
lar in the sense that it attempts to introduce fault-toleben ous compute nodes (tens of thousands), and each one of
havior into file systems by reliably executing I/O requests. those processes on the compute nodes perform 1/O. Fig-
However, we are concerned with HPC job input data and ure 1 depicts the overall design. Each compute node can
rely on external sources for I/O node failures recovery. act as a client to the parallel file system. Upon captur-

Replication is a commonly used technique for persis- ing an I/O error from any of these compute nodes, data re-
tent data availability [3, 5, 15]. Supercomputers prefer a covery is set in motion. The calling process is blocked,
high-performance scratch PFS for aggregate I/O bandwidth,and so is any other client trying to access the same un-
which is expensive and, therefore, precious. Replicas con-available data. The recovery process consults the Metadata
sume these precious storage resources as they persist evddirectory Service (MDS) of the PFS to obtain remote lo-
after job completion. Our recent work assessed the vighilit cations where persistent copies of the job input data
of temporally constrained replication [14], but it stilloes reside. (We discuss below how this metadata is cap-
at the expense of PFS implementation complexity and re-tured.) It then creates the necessary objects to hold tlze dat



Client able failure (e.g., an entire disk failure), file systems-per
System cal form in either “degraded” or “rebuild” mode, both of which
il el FLE Sz J incur perceivable performance losses [13]. In cases where

Normal /0 access] |, EI0: 4 standard hardware-based recovery is not feasible, the only
L — On-demand option is to trigger an application failure.
ercomeciion o8 @ > Recovery ~As ta(ppl(ijcati?n t(.axlecuti;)n ?rogressesS éhe tpefrf?rman'ce
e O O AMV.-Raiching from remote sources impact (and potential waste of resources) due to failures in
%g %;//I/;/é N,,F,sv‘-----“"‘}is‘i'}; crepases resuF;ting also in substantially increased tuumato
'l' l" 7 time when a job needs to be requeued. These aspects also
o impact overall HPC center serviceability.
' ' - On-the-fly recovery offers a viable alternative in such

cases. With ever increasing network speeds, HPC cen-
ters’ connectivity to high-speed links, highly tuned bulk

stripes that are to be recovered. Using the recovery meta-{ransport prot?cols are extremely competitive. For in-
data, remote patching is performed to fetch the missing Stance, ORNLs Leadership Class Facility (LCF) is con-
stripes from the source location. The source location could N€cted to several national testbeds like TeraGrid (a 10Gbps
be “/home”, or an HPSS archive in the same HPC cen- link), UltrascienceNet, Lambda Rail, etc. Recent testehav

ter, or a remote server. The patched data is stored in the PFSShown that a wide-area Lustre file system over the Ter-
and the corresponding metadata for the dataset in ques@Crid from ORNL to Indiana University can offer data
tion is updated in the MDS. More specifically, missing transfer speeds of up to 4.8 Gbps [12] for read opera-
stripes are patched in the client request order. Subse-ions bringing remote recovery well within reach.
quently, blocked processes resume their execution as data Depending on how I/O is interspersed in the application,
Stripes become available. Thus, the patching of miss-remote recovery has different merits. The majority of HPC
ing Stripes (prior to client accesses) is over|apped with scientific applications conduct I/O in a bUrSty fashion by
client I/0 operations to significantly reduce overhead. performing 1/O and computation in distinct phases. These
Automatic Capture of Recovery Metadata: To en- factors are exploited to overlap remote recovery with com-
able on-demand data recovery, we extend the PFS’s metaPutation and regular /O requests. Once a failure is recog-
data with recovery information. Staged input data has per-nized and recovery initiated, we can patch other missing
sistent origins. Source data locations, as well as infor- Stripes of data that will eventually be requested by the ap-
mation regarding the corresponding data movement pro-Plication and not just the ones already requested. Such be-
tocols, are recorded as optional recovery metadata (using@vior improves recovery performance significantly.
the extended attributes feature) on file systems. Locations At other times, however, we may not be able to over-
are specified as a uniform resource index (URI) of the lap recovery efficiently. In such cases, instead of consgmin
dataset comprised of the protocol, URL, port and path (e.g.,compute time allocation, a job might decide that being re-
http://sourcel/Stagedinput or gsiftp://mirror/Stagesilt). ~ dqueued is beneficial, thereby compromising on turnaround
S|mp|e file system interface extensiorsg, extended at- time. Thus, a combination of factors, such as I/O stridegtim
tributes) capture this metadata. We have built mechanismslready spent on computation, cost of remote recovery and

for the recovery metadata to be automatically stripped from & turnaround time deadline, can be used to decide if and
a job submission script's staging commandsdéftine re- when to conduct remote data reconstruction. Nonetheless,

covery [16] that we utilize here foonline recovery. By the cause of I/O errors needs to be rectified before the next
embedding such recovery-related information in file sys- job execution. Although this is beyond the scope of this pa-
tem metadata, the description of a user job'S data sourcdP€r, we have built the basis for a dynamic cost-benefit anal-
and sink becomes an integral part of the transient datasel/sis. Our experiments analyze results and discuss their af-
on the supercomputer while it executes. User credentials,fect on job turnaround time in light of on-the-fly recovery.
such as GSI (Grid Security Infrastructure) certificatesyma 4. Implementation
be needed to access the particular dataset from remote mir- Next, we discuss the implementation of on-the-fly recov-
rors. These credentials can also be included as file metadatary in the Lustre PFS. A Lustre FS comprises of the follow-
so that data recovery can be initiated on behalf of the user. ing three key components: Client, MDS (MetaData Server)
Impact on Center and User: Performance of onlinere- and OSS (Object Storage Server). Each OSS can be config-
covery requires further analysis. PFS at contemporary HPCured to host several OSTs (Object Storage Target) that man-
centers can support several Gbps of I/O rate. However, thisage the storage devices (e.g., RAID storage arrays). Should
requires availability of all data and absence of failures in a storage failure occur due to an OSS or OST failure, the
the storage subsystem. When faced with a RAID recover-original input data can be replenished from the remote data

Fig. 1. Architecture of on-the-fly recovery



source by reconstructing unavailable portions of files. recovery during application execution, much in contrast to

In supercomputers, remote 1/O is usually conducted prior work on offline recovery that dealt with data loss prior
through the head or service nodes. Therefore, these nodeto job activation [16].
are likely candidates for the initiation of recovery. In our Phase 3: Synchronization between Compute and
implementation, the head node of a supercomputer dou-Head Nodes:Upon receiving the data reconstruction re-
bles as a recovery node and has a Lustre client installedquest from the client, the head node performs two ma-
on it. It schedules recovery in response to the requests rejor tasks. First, it sends a request to the MDS, which
ceived from the compute nodes that observe storage failuregocates a spare OST to replace the failed one and cre-
upon file accesses. The head node serves as a coordinates a new object for the file data on this spare. It next
tor that facilitates recovery management and streamliees r fetches the partial file data from the data source and popu-
construction requests in a consistent and non-redundantates the new object on the spare OST with it. When multi-
fashion. Figure 2 depicts the recovery scenario. Events anple compute nodes (Lustre clients) access the same data of
notated by numbers happen consecutively in the indicatedthis file, the head node only issues one reconstruction re-
order resulting in four distinct phases. quest per file per OST (even if multiple requests were re-

Phase 1: FS Configuration and Metadata SetupFor ceived). At this point, compute nodes cannot access the
on-the-fly recovery, the client needs to capture the OST fail object on the new OST as the data has not been popu-
ure case immediately. Hence, we configure all OSTs in Lus- lated. Once a stripe becomes available, compute nodes may
tre’s “fail-out” mode (step 1 of Figure 2). Thus, any opera- access them immediately. To support such semantics, syn-
tion referencing a file with a data stripe on a failed OST re- chronization between the clients and OSTs is required. The
sults in an immediate 1/0 error without ever blocking. In fundamental mechanism for such synchronization is pro-
step 2, we further extend the metadata of the input files (atvided by Lustre locks.
the MDS) with recovery information indicating the URI of | ystre Intent/Extent Lock Basics: Lustre provides two
a file’s original source upon staging (see [16]). levels of locking, namely intent and extent locks. Intent

Phase 2: Storage Failure Detection at Compute |ocks arbitrate metadata requests from clients to MDS. Ex-
Nodes: To access the data of a file stored in the OST, the tent locks protect file operations on actual file data. Before
application issues callsia the standard POSIX file sys- modifying a file, an extent lock must be acquired. Each OST
tem API. The POSIX API is intercepted by the Lustre accommodates a lock server managing locks for stripes of
patched VFS system calls. data residing on that OST.

Due to the fail-out mode, both I/O node and data disk  gynchronization Mechanism: We have implemented
failures will lead to an immediate 1/O error at the client 5 centralized coordinator, a daemon residing on the head
upon file access (steps 3 and 4). By capturing the 1/O er-node. It consists of multiple threads that handle requests
ror in the system function, we obtain file name and index rom clients and perform recovery. Upon arrival of a new
of the failed OST or, in case of a disk failure, the location reqyest, the daemon launches the recovery procedure while
of the affected OST. In step 5, the client sends relevant in-the client remains blocked, just as other clients requgstin
formation (file name, OST index) to the head node, which, gata from this file/OST (step 6). Data recovery (step 7) is
inturn, initiates the data reconstruction. Hence, we perfo  njtiated by a novel addition to Lustre, thés(objectreney
online/real-time failure detection at the client for oredfly command. In response, the MDS locates a spare OST (on

[osTs] [AeadNodd  [Computing Nodes] which the file does not reside yet) and creates a new ob-
o 1. setup with —failout  p———T ject to replace the old one. Note that the MDS will not up-
—— date _|ts metadata |_nformat|0n at this time. Instead, the up-
Phase 2 ————————— X4 el EIO date is deferred lazily to step 9 to allow accesses to proceed
5. file/OST- . .
> fle = if they do not concern the failed OST.
6. block waiting reply i
7ff°:h6.lad"°de In step 8, the daemon acquires the extent lock for the
. opjec renew———— . . . . .
<e8. get extent lock—  mm—) , s_tnpgs qf the new object. S_mce the (new) object informa-
Phase 3 10. unblock tion is hidden from other clients, there cannot be any con-
—— clients with | . . . .
new metadata tention for the lock. In step 9, the metadata information is
1. update local metadata updated, which utilizes the intent mechanism provided b
. 12. re-access data 3 . ..
7 will block by extent lock Lustre again. In step 10, clients waiting for the patche@ddat
<14 fetch file data s = are unblocked and the new metadata is piggybacked. Af-
Phase 4 :f;p‘:pt‘?:c ter clients update their locally cached metadata (step 11),
|17, accoss file data they may already reference the new object. However, any

. access to the new object will still be blocked (step 12), this
Fig. 2. Steps for on-the-fly recovery time due to their attempt to acquire the extent lock, which



is still being held by the daemon on the head node. (stripes). Meanwhile, the daemon continues to patch subse-
Adjustment of the OST Extent Lock Grant Policy: In guent stripes to provide pipelined overlap between patch-
step 8, the daemon requests extent locks for all stripes ofing and application progress. 4) The extent lock is further
the recovery object. Consider the example in Fig. 3. Extent utilized for the second phase of blocking. Thus, data patch-
locks for stripes 2, 6, 10 and 14 are requested from OST 5.ing becomes an independent task that can be offloaded to
Upon a request for stripe 2, OST 5 grants the largest pos-the OSSs to distribute the patching workload in a scalable
sible extent ([0,-1] where -1 denotes) to the daemon.  manner. 5) An OSS failure only affects a subset of the com-
Afterward, requests for stripes 6, 10 and 14 match with puting nodes (the Lustre clients) even though all the diient
lock [0,-1] resulting in an incremented reference count of participate in the parallel I/O operations. Also, most dd th
the lock at the client without communicating with OST 5.  affected clients are blocked by the extent locks (without
Our design modifies this default behavior of coarse- communicating with the centralized coordinator on the head
granular locking. We want to ensure that the extent lock node). Hence, the approach scales as communication with
to the stripes will be released one-by-one immediately af- the centralized coordinator is limited to few nodes.
ter the respective stripe is patched. However, with Lustre  Phase 4: Data Reconstructionin step 13, the URI of
distributed lock manager (DLM), the daemon only decre- the remote file is obtained. In steps 14 and 15, stripes on the
ments the reference count on lock [0, -1] and releases it af-new object are populated. Due to per-stripe extent locks,
ter all the stripes are patched. stripes may be patched in any order. In our implementa-
To address this shortcoming, we adjust the extent lock tion, the clients subjected to /O errors will supply the file
grant policy at the OST server. Instead of granting the lock range to access in their reconstruction request to the head
of [0,-1], a request from the daemon on the head node isnode. The head node retains the order of the stripe requests
granted only the exact range of stripes requested. This wayand patches them accordingly. This speeds up application
extent locks for different stripes differ (in step 8). Alsmce progress during reconstruction, particularly when files ar
a stripe is patched, the respective lock can be released s@ccessed sequentially and a failure occurs in the middle of
that other clients can access the patched data right awayreading a file. In contrast, request-ignorant patching woul
Meanwhile, clients blocked on other stripes to be patchedhamper application progress by initiating a patch starting
remain blocked on the extent locks. The extent lock policy is With the lowest indexed stripe of an OST, even though this
only updated for requests from the daemon on the head nodétripe has already been read by clients.
without impacting the requests from other clients. Thus, it  To this end, we have implemented a new Lustre com-
imposes no penalty in the non-failure case. mand,Ifs patch Since phase 3 already obtains the extent
Suchmetadata update delagndtwo-phase blocking of  lock for all the stripes, the new command can update the
clients provides the following properties: 1) Before any datarange directly. Also, we set the file position in the patc
metadata update, clients can either access their cached dasystem function instead of invoking Iseek() at the userlleve
(which is consistent since stagein data is immutable) or re- This allows us to bypass the overhead associated with auto-
guest recovery (upon an I/O error). Either way, clients may matic read-ahead (due to VFS caching). The extent lock for
still access the stripes of the old objects, but the new ¢bjec each stripe is released immediately after patching so that
remain invisible to them until the head node has patched theclients can access the stripe instantly (step 16).
data and r}otified the cIiepts to update the metadata. 2) Beg. Experimental framework
fore patching the actual file data, the head node obtains an ;s testbed comprised a 17-node Linux cluster at NCSU.

extent lock for all stripes of the new object, thereby block- £5:h node was equipped with four 1.76 GHz processing
ing other clients that access the data now or later. 3) After .4 aq (2-way SMPs with dual-core AMD Opteron 265 pro-
patching the data, the extent locks per stripe are immedi'cessors) with 2 GB of memory and connected to a Gigabit
ately released so that other clients can access partial datghernet switch. The OS on each node was Fedora Core 5
‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘ 11 ‘ 12‘13‘14‘ 15‘16‘ Linux x86.64 with a LUStre-patChed RHEL5 2.6.18 Linux

kernel (Lustre 1.6.3). In our experiments, the cluster sode
were setup as I/O servers, compute nodes (Lustre clients),
or both, as indicated below. We used different data stag-
ing sources for the job input data: (1) "/home” on the lo-
cal NFS file system at the same HPC center with patch-
ing cost at 34.41MB/sec; (2) a server at another campus ac-
cessed by a file system client, SSHFS, based on Filesys-
tems in Userspace (FUSE) and secure shell with a patching
cost of 6.31MB/sec. Other patching sources}, GridFTP

Fig. 3. File reconstruction servers, might incur further delay. However, since most of

File size = 16MB, Stripe count = 4, Stripe size = IMB
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the patching cost is shown to be overlapped with compu- lapped with job 1/0 and hidden from the application. How-
tation or I/O operations, changes in patching cost remainever, the actual time overlap between the patching and the
largely hidden from applications. job 1/0 varies. The recovery overhead for both up-front and
6. Experimental results mid-way recovery ranges from 0.06 to 0.75 seconds. Al-
We assessed overhead and patching cost of on-the-fly rethough the reconstruction cost in Figure 4(a) rises with file
covery using an MPI benchmark and an MPI application.  size, this is hidden from the application. While the patghin
Performance of Matrix Multiplication: We first as- cost from remote SSHFS is 5 times that of local NFS, the
sessed an MPI kernel that performs dense matrix multipli- recovery overhead for jobs patching from remote SSHFS

cation (MM) with the standard’ = A x B matrix opera- is only slightly higher than local patching. The increase is
tions, whered, B andC aren x n matrices.A and B are dominated by the patching of the first stripe, which cannot
stored consecutively in an input file. We varyto manipu- be overlapped; subsequent stripes incur little extra cost.

late the size of the input file. Only one MPI task (the mas-  Performance of mpiBLAST: We also assessed the per-
ter) reads the input file before broadcasting the data to allformance of our solution using the mpiBLAST benchmark,
the other tasks (workers). The matrix produck B is dis- a parallel implementation of NCBI BLAST, which splits a
tributed to all MPI processes. Since input occurs early dur- database into fragments and distributes the query tasks to
ing execution and since the code is more compute intensiveworkers by query segmentation before the BLAST search
we focus on the recovery overhead,, the differenceinjob is performed in parallel.

execution time of the jobs with and without failure. Since mpiBLAST is more input-intensive, we discuss
Figure 4(a) shows the experimental results of matrix the impact of failure on the overall performance. Figure
multiplication for increasing matrix dimensions, (total- 5(a) shows the job run time. Figure 5(b) depicts the recov-

ing 64MB, 128MB, 256MB, 512MB and 1GB). The MPI ery overhead. mpiBLAST assigns one process to perform
job runs on 16 compute nodes (one MPI task each). Fig-file output and another to schedule search tasks. Hence, the
ure 4(b) depicts the experimental results for varying num- number of actual workers is the number of all the MPI pro-
ber of compute nodes (1, 2, 4, 8 and 16) and a 256MB datacesses minus two. Each worker accesses several files.
input. For both of these tests, th&ipe coun{(stripe width) We configured 9 OSTs and increased compute nodes
for the input file was 4 and thstripe sizewas 1IMB. We  from 3 to 16 so that some double as server nodes (since
configured 5 OSTs (10ST/OSS) with the file residing on our testbed has a total of 17 nodes). We distributed each
4 OSTs and the spare OST for reconstruction. Some nodesnput file to four of the OSTs by the Lustre stripe distri-
double as both I/0 and compute nodes. Since the configurapution policy and then failed one OST. As the number of
tion is the same, both with or without our solution, this pro- worker processes increases, more files need to be accessed,
vides a fair test environment. i.e., more files reside on the failed OST and require recov-
To assess our system’s capability to handle random stor-ery so that the recovery overhead also increases (see Figure
age failures, we varied the point in time where a failure oc- 5(b)). The number of failed files grows at the same rate as
curred. In one experiment, we failed one of the OSTs up the workers. Compared to the overall runtime, the increase
front, right as the MPI job started to run. This resulted in in recovery overhead is moderate. This is due to (1) par-
the master MPI task to experience an I/O error upon its first allel recovery of failed files referenced by disjoint work-
data access to the failed OST. In another experiment, weers and (2) reduced per-file patching cost for more work-
failed one OST mid-way during job execution. The mas- ers as file sizes decrease due to work sharing. Figure 5(b)
ter captures the I/O error immediately and sends a recoveryshows that the recovery overhead for jobs patching from re-
request for the lost data to the daemon on the head nodemote SSHFS is higher than for local patching due to the
Figures 4(a) and 4(b) indicate that the recovery overhead,slower data source. Also, with more workers, more failed
from an application standpoint, is below 0.8 seconds for all files exist. Consequently, recovery becomes more costly, ye
cases. This is consistent in the sense that patching is overat a moderate growth rate due to the aforementioned over-
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lap. For the benchmarks we used, such moderate recoverfORNL's Jaguar Leadership Computing Facility supercom-
overhead is negligible compared with the job runtime. We puter. This staged data trace contains details of every file
expect that the same holds true for most supercomputingstaged in the scratch PFS. We have calculated the distri-
jobs as large jobs tend to run much longer and as input filesbutions of file sizes, stripe sizes and stripe counts. If 1/0O
are typically only read in the job initialization phase. Wal  operations of jobs overlap with the failure of 1/0 nodes or
clock time estimates generally cover such negligible over- drives, the corresponding jobs will experience an I/O error
head. Hence, additional time need not be budgeted for thewhich triggers recovery. Since the job trace from LANL
job due to our techniques. lacks sufficient information regarding jobs’ I/O operatjon
7. Simulation Results we assume the worst-case scenario: running jobs are per-
We used the benchmarking results from the previous sec-forming I/O operations each time a failure occurs. When-
tion in a simulation study considering job traces along with ever a job encounters an 1/O failure in our simulation, we
failure traces, both collected by large supercomputer cen-charge the patching cost obtained from the previous experi-
ters. This allows us to study the impact of our approach on ments as recovery time for data reconstruction from /home.
overall center performance in terms of the average value andResults: Our simulations compare system performance
variance of job wait times. with and without recovery for different stripe counts.
Setup: We simulate 512 dual-CPU compute nodes We use mean and standard deviation (SD) of job wait
(without failures) since we focus on 1/O-node and stor- times to evaluate system performance. Without recov-
age failures here. In addition, 72 OSSs serve as I/0O nodesery, if a running job accesses an input file residing on
each with two OSTs connected to 8 disk drives (per OST). a failed OST, the job exits upon 1/O error and is re-
We use a job trace from LANL system 20 [6]h contain- queued at the queue’s tail. Similarly, disk or 1/O node
ing 489,376 job submission and completion records overfailures typically result in job exit before being re-
1,073 days. From the job trace, we generated a set of jobqueued. With our recovery, jobs will coordinate with the
submission events, each containing submission time, run-head node to patch missing data and continue to run de-
time and number of CPUs per job. To schedule jobs, our spite both failure cases.
simulator adopts the FIFO algorithm with backfilling (pop- Figures 6(a) and 6(b) depict the mean and standard devi-
ular with supercomputing centers). ation (SD) of the wait time for all jobs. Job wait times fol-
Another trace from LANL for system 20, the node fail- low a bimodal distribution with many short and few very
ure trace, contains 2,049 failure records over a period of long jobs. To address this, we filtered results removing jobs
1,349 days, each of which indicates the index of the failed that have a zero wait time under all test configurations. The
node, failure time and duration. In most cluster systems, higher the stripe count, the more OSTs the files are asso-
I/0O nodes tend to share the same configuration as com-ciated with. This means an OST failure will affect more
pute nodes. Therefore, we extrapolate the failure stegisti jobs. In fact, the percentage of the affected jobs over b jo
observed from this trace to the additional I/O nodes. More increases from.14% to 2.09% when the stripe count in-
specifically, system 20’s node failure trace is used to calcu creases from 2 to 32. This explains the rise of the curve
late the average node failure rate and repair times. We usewithout recovery with increasing stripe counts. With our re
those statistics to generate a set of failure events foré@ch  covery mechanism, in contrast, the mean and SD of wait
node. Due to a lack of disk failure data, we derive a com- times remain constant as stripe counts increase, indgatin
mon annualized failure rate (AFR) for a storage drive from a scalable solution for potentially very large Lustre serve
related work [10, 8]. We randomly choose the failure cases groups. Furthermore, the recovery mechanism results in the
from the node failure trace according to the AFR and ap- same mean and SD of wait times as the ideal case (with-
ply them to our simulation disks. out any failure) for all stripe counts.
As the job trace is devoid of staged data information  Figures 7(a) and 7(b) show the mean and SD of wait
(e.q, file size, stripe size, stripe count) for each job, we times for those jobs affected by failures. Since these jobs
have obtained a snapshot of the Lustre scratch space fronthave non-zero wait times without our recovery, no job fil-
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tering is applied. Without recovery, each failed job will be jobs from over 100k seconds to thousands of seconds. Thus,
requeued. On-the-fly recovery can handle both failure gasesboth HPC centers and users stand to benefit from improved
up-front and mid-way, as mentioned previously. Failure- serviceability, data availability and reduced job turnard
affected jobs result in slightly longer run times but finish time in the face of storage system failure.

without requeuing. For these affected jobs, gains due to on-References
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